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Abstract. Studies on thermal diffusion of lattice solitons in Fermi-Pasta-Ulam (FPU)-like lattices were
recently generalized to the case of dispersive long-range interactions (LRI) of the Kac-Baker form. The
variance of the soliton position shows a stronger than linear time-dependence (superdiffusion) as found
earlier for lattice solitons on FPU chains with nearest-neighbour interactions (NNI). Since the superdif-
fusion seems to be generic for nontopological solitons, we want to illuminate the role of the soliton shape
on the superdiffusive mechanism. Therefore, we concentrate on an FPU-like lattice with a certain class of
power-law long-range interactions where the solitons have algebraic tails instead of the exponential tails
in the case of FPU-type interactions (with or without Kac-Baker LRI). Despite of structurally similar
Langevin equations which hold for the soliton position and width of the two soliton types, the algebraic
solitons reach the superdiffusive long-time limit with a characteristic t3/2 time-dependence much faster
than exponential solitons. The soliton shape determines the diffusion constant in the long-time limit that
is approximately a factor of π smaller for algebraic solitons. Our results appear to be generic for non-
linear excitaitons in FPU-chains, because the same superdiffusive time-dependence was also observed in
simulations with discrete breathers.

PACS. 05.10.Gg Stochastic analysis methods (Fokker-Planck, Langevin, etc.) – 05.45.Yv Solitons –
05.40.-a Fluctuation phenomena, random processes, noise, and Brownian motion – 05.50.+q Lattice theory
and statistics (Ising, Potts, etc.)

1 Introduction

Nonlinear excitations like solitons and discrete breathers
have been drawing great attention over recent years. They
present very robust solutions of nonlinear partial differ-
ential equations and nonlinear lattice models which are
often used to describe a rather broad set of physical sys-
tems [1–3]. Nonlinear lattices like Klein-Gordon (KG),
Fermi-Pasta-Ulam or the discrete nonlinear Schroedinger
(DNLS) lattice (and their counterparts in the continuum
approximation) present all to often a strong approxima-
tion of the system of interest and it is sometimes not clear
to what extend solitons or discrete breathers are also rele-
vant in more realistic models. In the case of biomolecules,
the aspiration to highlight their basic functionalities with
computer simulations is a challenging task for the compu-
tational science nowadays. If we aim to understand prin-
cipally the role of nonlinear excitations in biomolecules,
we have to investigate simpler models than the numer-
ical ab initio calculations. Often used in this context is
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the Davydov model [4,5] for energy and charge transport
in proteins or the Peyrard-Bishop-Dauxois (PBD) model
which describes the melting and the denaturation of DNA
[6,7]. There are convincing evidences that some features of
nonlinear excitations in this simplified models are relevant
in explaining the functionality of biomolecules. Recently,
pump-probe measurements [8] showed that the lifetime of
NH stretching bands in the model protein ACN is (with
about 18 ps) in good agreement with numerical calcu-
lations of the Davydov model [9]. The observation that
the PBD model succeeds in determining the thermally in-
duced openings of the DNA strand at functionally relevant
sites for the DNA transcription [10] is also an example for
the relevance of nonlinear lattice models in biology.

Nowadays, many physicists who work in this field
try to extend and improve the basic models in order
to make them more realistic. The spatial structure of
biomolecules, thermal fluctuations, damping and long-
range effects stemming from Coulomb or dipole-dipole in-
teractions have certainly a great influence on the nonlinear
excitations and the statistics of the system. It is known
that long-range effects can change the features of solitons
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and discrete breathers qualitatively when the LRI exceed
some critical value [11,12]. In FPU-like chains and non-
linear Schrödinger models, they give rise to new types of
solitons which can coexist at the same value of the spec-
tral parameter [13]. Controlled switching between such
soliton states was recognized as a possible mechanism for
energy transport and storage in biomolecules [14]. In the
past, nonlinear KG lattices with LRI were frequently stud-
ied in investigations of a number of physical phenomena
such as dislocations in solids, charge density waves, ab-
sorbed layers of atoms or domain walls in ferromagnets
and ferroelectrics (see references in [15–17]). The effect of
thermal fluctuations and LRI are usually regarded sep-
arately [9,18,19] because of their complexity. Neverthe-
less it is known that LRI can have very interesting effects
on the thermodynamics of many different physical sys-
tems [20,21].

The Kac-Baker form presents a spatially exponential
coupling between different particles which is quite often
chosen for the inclusion of LRI in nonlinear lattice models
[11,21,22]. In the recent publication [23] lattice solitons
on FPU-like chain with Kac-Baker LRI in the presence
of a thermal reservoir were investigated. In the continuum
approximation of the system and with a collective variable
(CV) approach, it was possible to derive a Langevin set of
equations for the soliton position, similar to the solitons
on FPU chains [24]. The solitons on FPU chains (with or
without Kac-Baker LRI) show superdiffusive behaviour.
The position variance of the soliton shows, besides the
linear term in the time-dependence, also quadratic and
cubic terms. In [23], it was demonstrated, that the diffu-
sion mechanism for NNI and for additional LRI are quite
similar because the same CV ansatz was used. In the case
of Kac-Baker LRI, this approximation is valid unless the
soliton velocities do not reach the critical velocity, where
the soliton begins to develop a cusp [11].

Superdiffusion of nonlinear excitations in FPU-chains
was also observed in simulations, where a high-amplitude
localized excitation was injected in the center of a thermal-
ized FPU-chain, and a mean-square displacement ∼t3/2

was obtained for different force constants and tempera-
tures [25]. Interestingly, the diffusion of the localized exci-
tations seems to stem here from the scattering with low-
energy breathers, the possibility of a fluctuating breather
shape was not discussed.

In order to check the influence of the soliton shape on
the diffusion of the soliton, we choose a power-law cou-
pling. This leads in the continuum approximation (CA)
to a Benjamin-Ono (BO) equation, which is known to
posses algebraic soliton solutions [26]. The first studies in
that direction date back to Ishimori [28] who studied an-
harmonic chains with Lennard-Jones (2n, n) intermolec-
ular potential and showed that the dynamics is governed
by the Benjamin-Ono equation in the case n = 2 or by
the Korteweg-de Vries equation for n ≥ 4. In the case
of cubic and quartic nearest-neighbour interactions, a re-
ductive perturbation method yields a KdV + mKdV and
Benjamin-Ono equation which was shown to possess exact
nonsingular rational solutions [27].

2 The model

Our model is a one-dimensional chain of equally spaced
particles of mass m (m = 1) with an interatomic spac-
ing a (a = 1). We denote the displacement of the particle
n from its equilibrium position as un (absolute displace-
ment coordinates) and the difference wn = un+1 − un as
relative displacement coordinates. The potential consists
of a part UNN similar to the original potential chosen by
Fermi, Pasta and Ulam and a long-range potential ULR

with a power-law dependence of the harmonic coupling
constant Jnm

T =
1
2

N∑

n=1

(
dun(t)

dt

)2

(1)

UNN =
N∑

n=1

V (un+1(t) − un(t)) (2)

V (r) =
r2

2
− r3

3
(3)

ULR =
1
2

∑

n

∑

m �=n

J

| m − n |s (un − um)2. (4)

The model covers the physical situation of dipole-dipole
(s = 5) and Coulomb interactions (s = 3) between the
particles on the chain, if we restrict ourselves to small
relative displacements. The equation of motions in rela-
tive displacement coordinates can be obtained from the
Lagrangian of the system L = T − UNN − ULR

ẅi(t) = V ′(wi+1) − 2V ′(wi) + V ′(wi−1)

−J
∑

m �=0

(wi − wi+m)
| m |s . (5)

When we want to consider the effect of a thermal bath,
we can add damping and white noise terms to the orig-
inal equation (5) such that they fulfill the fluctuation-
dissipation theorem (Dhy = 2νhyT with kB set to
unity) [24]

ẅi(t) = V ′(wi+1) − 2V ′(wi) + V ′(wi−1)

− J
∑

m �=0

(wi − wi+m)
| m |s + νhy(ẇi+1 − 2ẇi + ẇi−1)

+
√

Dhy(ξi+1(t) − ξi) = 0 (6)

〈ξi(t)ξj(s)〉 = δ(t − s)δij . (7)

We choose hydrodynamical damping which depends on
the relative displacement velocities of the particles and
presents an intrinsic damping mechanism of the system.
The widely used Stokes damping is not appropriate for
pulse solitons because one obtains an imaginary disper-
sion relation the long-wave region of the Fourier spec-
trum what causes deformations of the soliton [29]. We go
to the continuum limit [wi(t) → w(x, t), ξi(t) → ξ(x, t),
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f(x+m, t) → em∂xf(x, t)] and find the partial differential
equation (PDE)

∂2
t w(x, t) = 2(cosh(∂x) − 1)V ′(w(x, t))

− 2J

∞∑

m=1

1 − cosh(m∂x)
ms

w(x, t) + νhy∂2
x∂tw(x, t)

+
√

Dhy∂2
xξ(x, t). (8)

The further treatment of the system depends on the value
of s. In [26] it is shown that in the case s > 5 the CA
yields a Boussinesq equation similar to the result with-
out LRI but with a different dispersion parameter. For
3 < s ≤ 5 it was proved that the soliton tails are no longer
exponential but algebraic and that for s ≤ 3.5 an energy
gap between the soliton states and the plane wave spec-
tra appears. For s = 4, the equation of motion becomes
a Hilbert-Boussinesq equation which can be reduced to
the integrable Benjamin-Ono form, which has algebraic
soliton solutions.

Since the soliton equation in [23] was of Boussinesq-
type and covered the limit of nearest-neighbour interac-
tions, we do not expect fundamental new effects for s > 5.
The choice s = 5 and s = 3 represent physically interest-
ing situations since this corresponds to Coulomb (s = 3)
and dipole-dipole (s = 5) interactions. Instead of investi-
gating this two situations, we choose the intermediate case
s = 4 to investigate the behaviour of solitons with alge-
braic tails. Opposite to the physically relevant cases s = 3
and s = 5, our choice s = 4 leads to an analytically easier
to handle model, a Hilbert-Boussinesq equation with the
resulting Benjamin-Ono-type soliton solutions. The per-
turbed Hilbert-Boussinesq equation

∂2
t w − c2∂2

xw − λ∂4
xw − Jπ

6
H(∂3

xw) + 2∂2
xw2 =

νhy∂2
x∂tw +

√
Dhy∂xξ(x, t) (9)

with c2 = (1+Jπ2/6) und λ = (1/12−J/24) follows from
expanding in (8) the operators for the nearest-neighbour
part and for the long-range part Q(s, ∂x) = 2

∑
m(1 −

cosh(m∂x))/ms

2(cosh(∂x) − 1) = 2
(

∂2
x

2!
+

∂4
x

4!
+ ...

)
(10)

Q(4, ∂x) = −π2

6
∂2

x − π

6
H(∂3

x) +
1
24

∂4
x, (11)

where H(f(x)) = 1/πP
∫ ∞
−∞ f(y)/(y − x)dy denotes the

Hilbert transform and P the Cauchy principal value. Sim-
ilarly like in [23], we will have to rewrite the soliton equa-
tion (9) in absolute displacement coordinates in order to
find its Lagrangian density (in the case νhy = 0). Notice
that the λ-term was neglected in reference [26].

3 Collective variables

The Hilbert-Boussinesq equation in absolute displacement
coordinates u(x, t) (w = ∂xu)

∂2
t u − c2∂2

xu − λ∂4
xu − Jπ

6
H(∂3

xu) + 2∂xu∂xxu =

νhy∂
2
x∂tu +

√
Dhy∂xξ(x, t) (12)

can be derived for νhy = 0 from the Lagrangian density

L =
ut

2
− c2u2

x

2
+

u3
x

Jπ
+

Jπ

6
uxxH(ux) + λ

u2
xx

2
−
√

Dhyuxξ(x, t). (13)

As a CV ansatz with X(t) and σ(t), we will use the
Benjamin-Ono-type soliton shape

u(x, t) = −AoArctan[σ(t)(x − X(t))]. (14)

One can check that this ansatz yields the correct values

Ao =
Jπ

3
+ 4λσo, σo =

6
πJ

(v2 − c2) (15)

(compare with [14]) when one minimizes the action for

〈L〉 =
∫ +∞

−∞
dxL =

A2
oπ

4

(
σ̇2

σ3
+ σẊ2

)

− c2A2
oπσ

4
− π

8
A3

oσ
2 +

A2
oJπ2σ2

48
+

A2
oπγσ3

8

+
√

Dhy

∫ +∞

−∞
dx

Aoσ

1 + σ2(x − X(t))2
ξ(x, t). (16)

(with λ = 0 and
√

Dhy = 0) for the soliton parameters σ,
Ao and X(t) assuming a coherent excitation with constant
velocity (σ̇ = Ȧo = 0, Ẋ = v).
To include the damping, we proceed like in [23] with the
generalized Hamilton principle of Ostrovsky et al. [30,31]

δ〈L〉
δXi

=
∂〈L〉
∂Xi

− ∂

∂t

∂〈L〉
∂Ẋi

= −〈Φui〉, (17)

where Φ = νhyuxxt is a dissipative field and the brackets
signify a spatial integration over x.

In Figure 1, we show two solitons with co = v/c = 1.01
(left panel) and co = 1.03 (right panel) on FPU chains
with power-law LRI (s = 4, J = 0.7877, c = 1.51516) and
for the Kac-Baker LRI (described in [23]). The values of
α and J for the solitons with the exponential tails in the
Kac-Baker case were chosen to produce a solution with the
same velocity and soliton energy H . The power-law LRI
yield solutions with Lorentzian shape (algebraic solitons)
whereas the Kac-Baker LRI yield solitons which are well
approximated by a sech (exponential solitons).
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Fig. 1. (Color online) Soliton solutions for power-law (s = 4)
and Kac-Baker long-range interactions. The two solitons in the
left and the right panel each have the same velocity co = v/c
(v: soliton velocity) and the same energy H .

4 Langevin system

Equations (17) together with the ansatz (14) leads to fol-
lowing stochastic equations for the collective variables σ(t)
and X(t):

σ̇Ẋ =
4
√

Dhyσ3

Aoπ

∫ +∞

−∞
dx

x̄ξ(x, t)
(1 + σ2x̄2)2

− νhy

2
Ẋσ3

(18)

(Ẋ2 − c2) =
Aoσ

2
+

λσ2

2
− 8

√
Dhyσ2

πAo

∫ +∞

−∞
dx

x̄2ξ(x, t)
(1 + σ2x̄2)2

(19)

with

Ao =
Jπ

3
+ 4λσ0, x̄ = x − X(t). (20)

In the previous step, we neglected small terms ∼σ̇2, ∼ Ẍ
and σ̈ in order to obtain technically less comprehensive
stochastic equations. The justification of this step was
checked by numerical simulations of the complete sys-
tem and was already successfully applied in the case of
Kac-Baker LRI [23].

Like in [23], we rewrite the equation (19) as an equa-
tion for Ẋ

Ẋ2 = v2
d

(
1 − 1

v2
d

8
√

Dhyσ2

πAo

∫ +∞

−∞
dx

x̄2ξ(x, t)
(1 + σ2x̄2)2

)
.(21)

We expand the appearing square root for the small pa-
rameter

√
Dhy to first order and approximate the velocity

vd =

√
c2 +

Ao

2
σ(t) +

λ

2
σ(t)2 (22)

in the stochastic term with the start velocity v of the
soliton (because c < vd < v, c ∼ v). We end up in a

system of stochastic integro-differential equations for the
CV:

(
σ̇

Ẋ

)
=

(
A1

A2

)
+

∫ +∞

−∞
dx

(
B11 0
0 B22

) (
ξ
ξ

)
, (23)

with

A1 = −νhy

2
σ3, A2 = vd (24)

B11 =
4
√

Dhyσ3

πA0v

(x − X(t))
(1 + σ2(x − X(t))2)2

(25)

B22 = −4
√

Dhyσ2

πA0v

(x − X(t))2

(1 + σ2(x − X(t))2)2
. (26)

We proceed like in [24,32] in order to find a statistically
equivalent Langevin system to (23) (with the same Fokker-
Planck equation in the Stratonovich interpretation [33])
which is more convenient for further numerical and analyt-
ical studies. The Langevin-system with two independent
Gaussian white noise processes reads:

(
σ̇

Ẋ

)
=

(
a1

a2

)
+

(
b11 0
0 b22

) (
ξ1

ξ2

)
(27)

with

a1 = −νhyσ
3

2
− Dhyσ2

4A2
oπv2

, a2 = vd

b11 =

√
Dhyσ

3
2

Ao
√

πv
, b22 =

√
Dhy

√
σAo

√
πv

. (28)

The corresponding system in [23] depends similarly on
the soliton parameters inverse width, Ao, velocity v and
on the temperature. Only numerical constants and the
velocity vd are different. The broadening of the soliton due
to the damping follows the same manner as for exponential
solitons in [24,23]. The result (27) manifests the statement
made in [23], that the LRI and the resulting soliton shape
determine the velocity vd(σ(t)) of the damped soliton.

5 Small-noise expansion

We proceed with a small-noise expansion for the param-
eter

√
Dhy like in [23,24] in order to derive an analyti-

cal expression for the soliton diffusion. The Langevin sys-
tem (27) is formally very similar to the sytem in [23] for
Kac-Baker LRI, only numerical constants and the soli-
ton parameters are different. For algebraic solitons, we
can approximate (22) with vd = c + Ao/4c σ(t) because
of the smallness of λ = 1/12 − J/24 < Ao ∼ 1 for the
solitons in Figure 1. The analytical solution in this case
is technically less extensive and leads practically to the
same results. The approximation for vd is not possible in
the case of Kac-Baker LRI in [23] because the long-range
forces yield a larger term which is quadratic in the inverse
soliton width.
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The result in the first order of
√

Dhy reads (see Ap-
pendix)

Var[X(t)] = Dhy

( −16A2
o(−1 +

√
η)

60A2
oc

2ν3
hyπσ3

ov2η
3
2

+
A2

o(η − 1)(18 − 10
√

η + (η − 1)(η + 2))

60A2
oc

2ν3
hyπσ3

ov2η
3
2

−2c2ν2
hyη(−1 +

√
η − (η − 1)(η + 1))

3A2
oc

2ν3
hyπσ3

ov2η
3
2

)
(29)

with

η = 1 + tr = 1 + σ2
oνhyt. (30)

The time-dependence of the position variance depends on
the time scale tr, which explains that the large time limit
(and the superdiffusive behaviour) sets in earlier for high-
velocity solitons (large values of σo) for the same damp-
ing constant. The corresponding result for Kac-Baker LRI
is even more complex, which stems from the longer ex-
pression for vd [23]. The time scale which describes the
broadening of the exponential soliton and the diffusion is
tr = 1.6νhyγ

2
o t where γ(t) is the inverse width of the ex-

ponential soliton (see [23])
We are interested in the soliton diffusion for large times
tr. Substituting (30) into (29) and looking for the leading
order of tr yields:

Var[X(t)]inf ≈ Dhy

60c2ν1.5
hy πv2

t1.5, (31)

which differs from the result in [23] only by the numeri-
cal constant. For very small times, the result (29) gives a
linear time-dependence

Var[X(t)]0 =
4
3

Dhy

A2
oπσ2

ov2
t. (32)

The results of the small-noise expansion shows the same
characteristic dependencies on the soliton parameters as
for Kac-Baker LRI in [23]. For intermediate times, the re-
sult (29) describes the transition when the position vari-
ance turns from the small-time dependence into the long-
time limit wherefore a stronger increase in time (mainly
∼t2) can be observed.

6 Simulations

The simulation of system (6) was performed in the same
manner as described in [23] but with power-law long-range
coupling instead of the Kac-Baker LRI. The position vari-
ance of the soliton was calculated from 100 different re-
alizations of the chain. We used the solitons depicted in
Figure 1 as initial conditions of the chain. The soliton
with co = 1.01 (σo ≈ 0.1) is much broader than the lattice
spacing whereas the soliton with co = 1.03 (σo ≈ 0.3) is
rather discrete in the soliton center. The coupling param-
eter is always fixed at the value J = 0.7877 which yields

Fig. 2. (Color online) Position variance of a low-velocity (1.01)
and a high-velocity (1.03) soliton on a anharmonic chain with
power-law long-range interactions (J = 0.7877, s = 4). We
compare the simulation results with equation (29), the result
of a small-noise expansion of the Langevin system (27) of the
CV theory.

the sound velocity c = 1.51516, the same value was used
in [23]. In order to compare the results of the Kac-Baker
LRI with the power-law LRI and to be able to draw mean-
ingful conclusions , we also use the same damping constant
νhy = 0.01 and the same temperature T = 0.0001 as in
reference [23].

The analytical result for the position variance (29)
agrees rather well with the simulation results (Fig. 2). In
general, one expects the analytical results to be slightly
smaller than the simulation results because the possible
contribution of phonons is not regarded in the calcula-
tions of Section 3. It was shown for a related short-range
model that the phonons have indeed a perceptible influ-
ence on the soliton diffusion [35]. The analytical result
for the low-velocity soliton diffusion for co = 1.01 is too
small for small times. Similar discrepancies appeared for
Kac-Baker LRI in [23] and they were interpreted as the
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influence of phonons which cause higher values in the sim-
ulations. The analytical result for the high-velocity soliton
co = 1.03 deviates from the simulation results for large
times. This feature seems to stem from our restriction
to first order perturbations in the small-noise expansion.
When the solitons are very narrow, the width of the soli-
ton changes quite fast and the first-order correction of
σ(t) can fail. Such deviations were also observed for FPU
chains with or without Kac-Baker LRI [23,36].

The analytical result for the soliton diffusion depends
only on the time scale tr = νhyσ2

ot and for large times
the diffusion should approach the result (31) from below.
Since the time scale tr depends on the width of the soliton,
the long-time approximation for the position variance for
high-velocity solitons will be valid for smaller values of
t than for low-velocity solitons. For co = 1.03 (σo ≈ 0.3)
tr > 1 is valid for t > 1111 whereas the corresponding time
for co = 1.01 (σo ≈ 0.1) is t > 10 000. Therefore, we will
check the validity of the long-time approximation result
of the position variance for the soliton with co = 1.03. In
deriving the long-time limit (31) of the position variance,
we recognized that the approximation

Var[X(t)]h ≈ Dhy

60c2ν2
hyπσ3

ov2

t3r
t1.5
r + 1.5

√
tr

(33)

describes the simulation results very well for all times t.
Neglecting the

√
tr-term for large tr yields immediately

the result (31).
The comparison between the simulation results and

Var[X(t)]h or Var[X(t)]inf in Figure 3 shows that there is
practically no linear dependence on t similarly as for high-
energy solitons with exponential tails with Kac-Baker LRI
in [23]. The superdiffusion with stronger-than-linear terms
in the time-dependence of the position variance is the
dominating mechanism for high-energy solitons. The time-
dependence of Var[X(t)]h describes the simulation results
very well for all times and the soliton can be described
by a time-dependence according to (31) (∼t3/2) for large
times. For lower soliton energies like for co = 1.01 (Fig. 2)
the normal contributions on Var[X(t)] are stronger and
a comparison with Var[X(t)]inf yields a worse agreement
because in this case the limit of large tr can not be used
for t < 10 000.

In the limit of short times (tr 	 1), the quality of the
result for the linear contribution in time (32) is very sim-
ilar to the Kac-Baker case and yields values for Var[X(t)]
which are smaller than the simulation results. For the soli-
ton with co = 1.01 the slope of (32) is approximately half
of the value one would get from a linear fit of the simula-
tion results for small times.

7 Comparison

Up to now, we have mentioned the similarities between the
thermal diffusion of solitons with algebraic and exponen-
tial tails on FPU-like chains. Now, we want to demonstrate
the main difference, namely the different time-dependence

Fig. 3. (Color online) Position variance of a high-velocity soli-
ton (co = 1.03) on an anharmonic chain with power-law long-
range interactions (J = 0.7877, s = 4). The simulation and two
different long-time approximations for (29), Var[X(t)]inf (31)
and Var[X(t)]h (33), are shown. For t = 10 000 (tr ≈ 9), the
long-time limit is not yet reached, but the simulation results
approach this function for long times.

of the superdiffusion in the two cases. We want to di-
rectly compare the results for Var[X(t)] and their time-
dependence for two solitons with the same energy and ve-
locity (co = 1.03) but one on a chain with power-law LRI
and the other on a chain with Kac-Baker LRI. For the
two solitons, normal diffusion contributions are negligible
and the best fits in Figure 4 demonstrate that the position
variance of algebraic solitons increases with ∼t3/2 whereas
for the sech-shaped solitons, the increase goes with a
quadratic (∼t2) and a cubic (∼t3) term. The small-noise
expansion results for both soliton types have the same
long-time behaviour (∼t3/2) (compare with [23]) which is
reached by the algebraic soliton in Figure 4 for t > 8000,
whereas the exponential soliton is for times t < 10 000 still
in the regime where the long-time limit is not applicable.
The Langevin systems for both soliton types are identi-
cal apart from the numerical constants and the values of
the soliton parameters like the width. For Kac-Baker LRI,
the inverse soliton width γo = 0.132 at t = 0 is distinctly
smaller than for the power-law case with σo = 0.279 for
the same energy and soliton velocity. Since the time scale
tr depends quadratically on the inverse width, it is not
surprising that the long-time limit for exponential soli-
tons is valid after much longer times. This argument is
decisive for different solitons of the same type. It follows
directly from the small-noise expansion that the long-time
limit for the algebraic soliton with co = 1.01 appears for
σ2

o(co = 1.03)/σ2
o(co = 1.01) ≈ 5.44 longer times than for

the algebraic soliton with co = 1.03.
In order to estimate when the exponential soliton

reaches the long-time asymptotics, we have to concentrate
our studies on the discussion of the result Var[X(t)] from
the small-noise expansion for algebraic and exponential
solitons (Fig. 5). Simulations for times much longer than
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Fig. 4. (Color online) Simulation results for the position vari-
ance of two solitons, one on an anharmonic chain with power-
law long-range interactions (J = 0.7877, s = 4) and the other
soliton on an anharmonic chain with Kac-Baker long-range
interactions for T = 0.0001. The interaction radius and the
coupling for the Kac-Baker case were chosen in such a way
that the two solitons have the same velocity co = 1.03 and
the same energy. In order to demonstrate the difference in the
time-dependence for the two solitons, we added a best fit for
the two simulation results for Var[X(t)]. One can clearly see
that the position variance of the algebraic soliton approaches
a ∼t1.5 time-dependence, whereas in the Kac-Baker case, the
time-dependence can be fitted by a quadratic and a cubic term.

104 would be too time-consuming. The double-logarithmic
scales in Figure 5 make clear that the Kac-Baker soliton
reaches the long-time limit Var[X(t)]inf after much longer
times than the power-law soliton. The time window where
a stronger time-dependence than ∼t3/2 appears is approx-
imately ten times larger for the Kac-Baker soliton.

The influence of the soliton shape determines the dif-
fusion constant in Var[X(t)]inf , which is approximately a
factor of π larger for exponential solitons. One can equiv-
alently state that the longer transient times to the long-
time limit for the exponential soliton is a consequence of
the higher value of the diffusion constant. This remarkable
difference for the two soliton types results only from the
different soliton shapes because the numerical constant
in (31) is determined by the numerical constants in the
Langevin system (27) which follow from spatial integra-
tions over the soliton profile in the CV procedure.

The time evolution of the velocity of the energeti-
cally equivalent algebraic and exponential soliton, vd(σ(t))
and vd(γ(t)), is rather different despite of the same start
value and the structural similarities for vd. In Figure 6,
we present the simulation results for the mean velocity
〈Ẋ(t)〉 of the two solitons in comparison with the zeroth
order expressions for vd from the small-noise expansion:
vd(σ(0)(t)) and vd(γ(0)(t)) [23].

These hold for the zero temperature case but describe
the mean velocity of the two noisy solitons already quite
well. We can directly see that the power-law soliton ap-

Fig. 5. (Color online) Var[X(t)] and Var[X(t)]inf from a small-
noise expansion for the two solitons of Figure 4. The algebraic
soliton reaches the long-time limit Var[X(t)]inf much sooner
than the exponential soliton with the same initial energy H =
1.09 and velocity co = 1.03. The result Var[X(t)]inf shows the
same time-dependence but the diffusion constant for algebraic
solitons is approximately a factor of π smaller.

Fig. 6. (Color online) The simulation results for the mean
soliton velocity 〈Ẋ〉 in case of a noisy chain with T = 0.0001
for energetically equivalent algebraic and exponential solitons
with co = 1.03. The zeroth-order results (without noise) for
the soliton velocities vd(σ

(0)(t)) and vd(γ
(0)(t)) agree rather

well with the simulation results and demonstrate the different
dynamics of the two soliton types.

proaches the long-time limit with small soliton velocities
earlier than the Kac-Baker soliton. The slower dynamics
of the Kac-Baker soliton is caused by its broad, exponen-
tial shape and the resulting slower time scale tr which
controls the time-evolution of γ(0)(t). The dependence of
vd on a term ∼γ2 for exponential solitons (which is neg-
ligible for algebraic solitons) influences the soliton veloc-
ity (and therefore the superdiffusion), especially for pro-
nounced LRI character and for small times when the long-
time limit is not yet reached.
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8 Conclusions

We investigated the diffusion of algebraic solitons on FPU-
like chains with power-law long-range interactions and de-
rived analytically a result for the position variance which
agrees well with the simulations of the discrete system.
The results clearly reveal that the soliton diffusion and
the damping-induced reshaping of the soliton depends on
the time scale tr = σ2

oνhyt which is given by the soli-
ton width and the damping constant. For very broad soli-
tons, the damping effects are quite weak because the parti-
cles in the soliton profile have moderate relative velocities
and tr evolves slowly in t. A small-noise expansion of the
Langevin system yields an analytical result for the soliton
diffusion which depends on tr and predicts a superdiffusive
long-time behaviour ∼t3/2. This result makes clear why
the superdiffusion, which sets in for large tr, dominates
the diffusion of high-energy solitons (σ−1

o small). These
basic features were also found in earlier studies for soli-
tons with exponential shape. The superdiffusion of lattice
solitons can therefore be regarded as generic when the life-
time of the solitons is much larger than 1/σ2

oνhy. On chains
with NNI, this situation can often not be reached for low-
energy solitons because they are rapidly destroyed by the
fluctuations and the damping. The LRI stabilize the soli-
ton and lead to higher soliton energies and lifetimes which
makes the superdiffusion the dominating mechanism.

The shape of the soliton does not change the basics of
the diffusion process. The Langevin systems for the collec-
tive variabels (inverse width and soliton position) are tech-
nically similar, only numerical constants and the depen-
dence of the soliton velocity on the inverse width are dif-
ferent. We proved in simulations and by analyzing the an-
alytical result that despite of the similarities, the superdif-
fusive behaviour of the two soliton types exhibits striking
differences even when the soliton energy and velocity co-
incide. The algebraic solitons are generally narrower than
exponential solitons which leads to faster dynamics for the
time scale tr and an earlier validity of the long-time limit
with the characteristic∼t3/2 time-dependence. The broad-
ness of the exponential solitons, the corresponding slower
dynamics for tr and the stronger dependence on higher
orders of the inverse width in the soliton velocity shift the
∼t3/2 region to larger times t which leads to the observed
characteristic quadratic and cubic time-dependence in the
simulations. The perhaps most remarkable effect of the dif-
ferent soliton shapes is that the exponential solitons show
larger position variances than their algebraic counterparts
for sufficiently long times. The diffusion constant in the
long-time limit is for algebraic solitons approximately a
factor of π smaller than for exponential solitons. This ef-
fect is only caused by the different soliton shapes which
determine numerical constants in terms which describe the
coupling between the soliton velocity and the fluctuations
of the soliton width. Further studies for different values of
s would be helpful to explain the influence of power-law
interactions on the soliton diffusion. Especially the diffu-
sion of solitons on chains with power-law LRI for the case
s < 3.5 could be interesting because a gap between the
plane-wave spectra and the soliton energies appears.

An important step would be analytical attempts to
explain the simulations for superdiffusive high-amplitude
localized modes as described in [25]. There, it was argued
that scattering events are responsible for the superdif-
fusive behaviour. Surprisingly, the superdiffusive time-
dependence ∼t3/2 is exactly the same as in our studies
for rather broad lattice solitons. However, in our case the
superdiffusion mechanism is completely different.

Appndix A: Small-noise expansion

The small-noise expansion of the Langevin set (27) follows
reference [34] and was already successfully applied to the
problem of the diffusion of low-velocity solitons in the FPU
system without long-range interactions [24]. We seek an
asymptotic solution of the form

σ(t) = σ(0)(t) + εσ(1)(t) + ... (34)

X(t) = X(0)(t) + εX(1)(t) + ... (35)

where ε is a small parameter which is formally introduced
to consider the influence of the noise terms as small per-
turbations (

√
Dhy ∼ ε). The contribution of the drift term

in the different orders of ε are calculated following the rule

ai(σ(t)) = ai(σ(0) +
∞∑

m=1

εmσ(m)(t))

= a
(0)
i (t) + εσ(1)(t)

dai(σ(0)(t))
dσ(0)(t)

+ ... (36)

In order to minimize the technical efforts, it is advisable
to approximate the velocity a2 = vd by the following ex-
pression

a2 =

√
c2 +

Ao

2
σ(t) +

λ

2
σ2(t) ≈ c

√
1 +

Ao

2c2
σ(t)

≈ c +
Ao

4c
σ(t), (37)

which was checked to be appropriate for typical soliton
parameters J , v. The equations in the order ε0 read:

dσ(0)(t) = −νhy

2
σ(0)(t)3dt (38)

dX(0)(t) =
(

c +
A0

4c
σ(t)

)
dt. (39)

These equations describe the damped soliton. The damp-
ing induced broadening of the soliton is formally equiva-
lent to the case of exponential soliton solutions in [23]. In
the expression for the soliton velocity it is obvious that
the damped soliton gets broader (smaller σ) which leads
to a slowdown of the soliton. In the limit of long times,
the soliton width diverges and the soliton approaches the
velocity of sound.
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The first order corrections due to the noise read:

dσ(1)(t) = −σ(1)(t)
3
2
νhy(σ(0)(t)2)dt +

√
Dσ(0)(t)

3
2

A0
√

πv
dW1

(40)

dX(1)(t) = σ(1)(t)
A0

4c
dt +

√
D√

σ(0)
√

πA0v
dW2. (41)

If we substitute the result for σ(0) = σo/
√

νhyσ2
ot + 1 into

(41) we calculate the first-order expression for the dislo-
cation of the soliton due to the noise

X(1)(t) =

√
Dσ

(
o

3
2 )

4c
√

πv

∫ t

0

dtη′− 3
2

∫ t′

0

dt′′η′′ 3
4 dW1(t′′)

+
√

D

σo
√

πAov

∫ t

0

η′ 1
4 dW2(t′) (42)

η′ = 1 + νhyσ2
ot′. (43)

After some straightforward calculations we can calculate
the position varinace

Var[X(1)(t)] = lim
s→t

〈X(1)(t)X(1)(s)〉. (44)
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